{ "id": "1709.02584", "version": "v1", "published": "2017-09-08T08:27:35.000Z", "updated": "2017-09-08T08:27:35.000Z", "title": "New congruences for broken $k$-diamond partitions", "authors": [ "Dazhao Tang" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "The notion of broken $k$-diamond partitions was introduced by Andrews and Paule. Let $\\Delta_{k}(n)$ denote the number of broken $k$-diamond partitions of $n$ for a fixed positive integer $k$. In this paper, we establish new infinite families of broken $k$-diamond partition congruences.", "revisions": [ { "version": "v1", "updated": "2017-09-08T08:27:35.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "diamond partition congruences", "infinite families", "fixed positive integer" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }