{ "id": "1709.02455", "version": "v1", "published": "2017-09-07T21:14:20.000Z", "updated": "2017-09-07T21:14:20.000Z", "title": "A lower bound for the principal eigenvalue of fully nonlinear elliptic operators", "authors": [ "Pablo Blanc" ], "categories": [ "math.AP" ], "abstract": "In this article we present a new technique to obtain a lower bound for the principal Dirichlet eigenvalue of a fully nonlinear elliptic operator. We ilustrate the construction of an appropriate radial function required to obtain the bound in several examples. In particular we use our results to prove that $\\lim_{p\\to \\infty}\\lambda_{1,p}=\\lambda_{1,\\infty}=\\left(\\frac{\\pi}{2R}\\right)^2$ where $\\lambda_{1,p}$ and $\\lambda_{1,\\infty}$ are the principal eigenvalue for the homogeneous $p$-laplacian and the homogeneous infinity laplacian respectively.", "revisions": [ { "version": "v1", "updated": "2017-09-07T21:14:20.000Z" } ], "analyses": { "subjects": [ "35P15", "35P30", "35J60", "35J70" ], "keywords": [ "fully nonlinear elliptic operator", "lower bound", "principal eigenvalue", "appropriate radial function", "principal dirichlet eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }