{ "id": "1709.01114", "version": "v1", "published": "2017-09-04T18:50:10.000Z", "updated": "2017-09-04T18:50:10.000Z", "title": "When does $C(K,X)$ contain a complemented copy of $c_0(Γ)$ iff $X$ does?", "authors": [ "Elói Medina Galego", "Vinícius Morelli Cortes" ], "comment": "12 pages, submitted", "categories": [ "math.FA" ], "abstract": "Let $K$ be a compact Hausdorff space with weight w$(K)$, $\\tau$ an infinite cardinal with cofinality cf$(\\tau)$ and $X$ a Banach space. In contrast with a classical theorem of Cembranos and Freniche it is shown that if cf$(\\tau)>$ w$(K)$ then the space $C(K, X)$ contains a complemented copy of $c_{0}(\\tau)$ if and only if $X$ does. This result is optimal for every infinite cardinal $\\tau$, in the sense that it can not be improved by replacing the inequality cf$(\\tau)>$ w$(K)$ by another weaker than it.", "revisions": [ { "version": "v1", "updated": "2017-09-04T18:50:10.000Z" } ], "analyses": { "subjects": [ "46B03", "46E15", "46E40", "46B25" ], "keywords": [ "complemented copy", "infinite cardinal", "compact hausdorff space", "banach space", "classical theorem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }