{ "id": "1709.01106", "version": "v1", "published": "2017-09-04T18:20:28.000Z", "updated": "2017-09-04T18:20:28.000Z", "title": "Bubbling solutions for Moser-Trudinger type equations on compact Riemann surfaces", "authors": [ "Pablo Figueroa", "Monica Musso" ], "comment": "41 pages", "categories": [ "math.AP" ], "abstract": "We study an elliptic equation related to the Moser-Trudinger inequality on a compact Riemann surface $(S,g)$, $$ \\Delta_g u+\\lambda \\Biggl(ue^{u^2}-{1\\over |S|} \\int_S ue^{u^2} dv_g\\Biggl)=0,\\quad\\text{in $S$},\\qquad \\int_S u\\,dv_g=0, $$ where $\\lambda>0$ is a small parameter, $|S|$ is the area of $S$, $\\Delta_g$ is the Laplace-Beltrami operator and $dv_g$ is the area element. Given any integer $k\\geq 1$, under general conditions on $S$ we find a bubbling solution $u_\\lambda$ which blows up at exactly $k$ points in $S$, as $\\lambda \\to0$. When $S$ is a flat two-torus in rectangular form, we find that either seven or nine families of such solutions do exist for $k=2$. In particular, in any square flat two-torus actually nine families of bubbling solutions with two bubbling points do exist. If $S$ is a Riemann surface with non-constant Robin's function then at least two bubbling solutions with $k=1$ exists.", "revisions": [ { "version": "v1", "updated": "2017-09-04T18:20:28.000Z" } ], "analyses": { "subjects": [ "35J08", "35J15", "53C20" ], "keywords": [ "compact riemann surface", "bubbling solution", "moser-trudinger type equations", "square flat two-torus", "non-constant robins function" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }