{ "id": "1709.00969", "version": "v1", "published": "2017-09-04T14:07:11.000Z", "updated": "2017-09-04T14:07:11.000Z", "title": "Moments and ergodicity of the jump-diffusion CIR process", "authors": [ "Peng Jin", "Jonas Kremer", "Barbara RĂ¼diger" ], "comment": "21 pages", "categories": [ "math.PR" ], "abstract": "We study the jump-diffusion CIR process, which is an extension of the Cox-Ingersoll-Ross model and whose jumps are introduced by a subordinator. We provide sufficient conditions on the L\\'evy measure of the subordinator under which the jump-diffusion CIR process is ergodic and exponentially ergodic, respectively. Furthermore, we characterize the existence of the $\\kappa$-moment ($\\kappa>0$) of the jump-diffusion CIR process by an integrability condition on the L\\'evy measure of the subordinator.", "revisions": [ { "version": "v1", "updated": "2017-09-04T14:07:11.000Z" } ], "analyses": { "subjects": [ "60J25", "37A25", "60J35", "60J75" ], "keywords": [ "jump-diffusion cir process", "ergodicity", "levy measure", "subordinator", "cox-ingersoll-ross model" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }