{ "id": "1709.00556", "version": "v1", "published": "2017-09-02T10:10:20.000Z", "updated": "2017-09-02T10:10:20.000Z", "title": "Nonlinear Fokker-Planck equations for Probability Measures on Path Space and Path-Distribution Dependent SDEs", "authors": [ "Xing Huang", "Michael Röckner", "Feng-Yu Wang" ], "comment": "22 pages", "categories": [ "math.PR" ], "abstract": "By investigating path-distribution dependent stochastic differential equations, the following type of nonlinear Fokker--Planck equations for probability measures $(\\mu_t)_{t \\geq 0}$ on the path space $\\mathcal C:=C([-r_0,0];\\mathbb R^d),$ is analyzed: $$\\partial_t \\mu(t)=L_{t,\\mu_t}^*\\mu_t,\\ \\ t\\ge 0,$$ where $\\mu(t)$ is the image of $\\mu_t$ under the projection $\\mathcal C\\ni\\xi\\mapsto \\xi(0)\\in\\mathbb R^d$, and $$L_{t,\\mu}(\\xi):= \\frac 1 2\\sum_{i,j=1}^d a_{ij}(t,\\xi,\\mu)\\frac{\\partial^2} {\\partial_{\\xi(0)_i} \\partial_{\\xi(0)_j}} +\\sum_{i=1}^d b_i(t,\\xi,\\mu)\\frac{\\partial}{\\partial_{\\xi(0)_i}},\\ \\ t\\ge 0, \\xi\\in \\mathcal C, \\mu\\in \\mathcal P^{\\mathcal C}.$$ Under reasonable conditions on the coefficients $a_{ij}$ and $b_i$, the existence, uniqueness, Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as well as derivative estimates are derived for the martingale solutions.", "revisions": [ { "version": "v1", "updated": "2017-09-02T10:10:20.000Z" } ], "analyses": { "keywords": [ "nonlinear fokker-planck equations", "path-distribution dependent sdes", "probability measures", "path space", "path-distribution dependent stochastic differential equations" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }