{ "id": "1709.00400", "version": "v1", "published": "2017-09-01T17:40:50.000Z", "updated": "2017-09-01T17:40:50.000Z", "title": "On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$", "authors": [ "Attila Bérczes", "István Pink", "Gamze SavaŞ", "Gökhan Soydan" ], "comment": "26 pages, accepted for publication in Journal of Number Theory (2017)", "doi": "10.1016/j.jnt.2017.07.020", "categories": [ "math.NT" ], "abstract": "In this work, we give upper bounds for $n$ on the title equation. Our results depend on assertions describing the precise exponents of $2$ and $3$ appearing in the prime factorization of $T_{k}(x)=(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}$. Further, on combining Baker's method with the explicit solution of polynomial exponential congruences (see e.g. BHMP), we show that for $2 \\leq x \\leq 13, k \\geq 1, y \\geq 2$ and $n \\geq 3$ the title equation has no solutions.", "revisions": [ { "version": "v1", "updated": "2017-09-01T17:40:50.000Z" } ], "analyses": { "subjects": [ "11D41", "11D61" ], "keywords": [ "diophantine equation", "title equation", "polynomial exponential congruences", "prime factorization", "upper bounds" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }