{ "id": "1709.00182", "version": "v1", "published": "2017-09-01T07:27:00.000Z", "updated": "2017-09-01T07:27:00.000Z", "title": "On the eigenvalues of $A_α$-spectra of graphs", "authors": [ "Huiqiu Lin", "Jie Xue", "Jinlong Shu" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of $G$. For any real $\\alpha\\in [0,1]$, Nikiforov \\cite{VN1} defined the matrix $A_{\\alpha}(G)$ as $$A_{\\alpha}(G)=\\alpha D(G)+(1-\\alpha)A(G).$$ In this paper, we give some results on the eigenvalues of $A_{\\alpha}(G)$ with $\\alpha>1/2$. In particular, we show that for each $e\\notin E(G)$, $\\lambda_i(A_{\\alpha}(G+e))\\geq\\lambda_i(A_{\\alpha}(G))$. By utilizing the result, we prove have $\\lambda_k(A_{\\alpha}(G))\\leq\\alpha n-1$ for $2\\leq k\\leq n$. Moreover, we characterize the extremal graphs with equality holding. Finally, we show that $\\lambda_n(A_{\\alpha}({G}))\\geq 2\\alpha-1$ if $G$ contains no isolated vertices.", "revisions": [ { "version": "v1", "updated": "2017-09-01T07:27:00.000Z" } ], "analyses": { "keywords": [ "eigenvalues", "adjacency matrix", "diagonal matrix", "extremal graphs" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }