{ "id": "1708.09733", "version": "v1", "published": "2017-08-31T14:17:15.000Z", "updated": "2017-08-31T14:17:15.000Z", "title": "Riesz potential and maximal function for Dunkl transform", "authors": [ "D. V. Gorbachev", "V. I. Ivanov", "S. Yu. Tikhonov" ], "comment": "25 pages", "categories": [ "math.CA" ], "abstract": "We study weighted $(L^p, L^q)$-boundedness properties of Riesz potentials and fractional maximal functions for the Dunkl transform. In particular, we obtain the weighted Hardy-Littlewood-Sobolev type inequality and weighted week $(L^1, L^q)$ estimate. We find a sharp constant in the weighted $L^p$-inequality, generalizing the results of W. Beckner and S. Samko.", "revisions": [ { "version": "v1", "updated": "2017-08-31T14:17:15.000Z" } ], "analyses": { "subjects": [ "42B10", "33C45", "33C52" ], "keywords": [ "dunkl transform", "riesz potential", "fractional maximal functions", "weighted hardy-littlewood-sobolev type inequality", "sharp constant" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }