{ "id": "1708.08633", "version": "v1", "published": "2017-08-29T08:14:46.000Z", "updated": "2017-08-29T08:14:46.000Z", "title": "Remarks on the Crouzeix-Palencia proof that the numerical range is a $(1+\\sqrt2)$-spectral set", "authors": [ "Thomas Ransford", "Felix Schwenninger" ], "comment": "4 pages", "categories": [ "math.FA", "math.NA" ], "abstract": "Crouzeix and Palencia recently showed that the numerical range of a Hilbert-space operator is a $(1+\\sqrt2)$-spectral set for the operator. One of the principal ingredients of their proof can be formulated as an abstract functional-analysis lemma. We give a new short proof of the lemma and show that, in the context of this lemma, the constant $(1+\\sqrt2)$ is sharp.", "revisions": [ { "version": "v1", "updated": "2017-08-29T08:14:46.000Z" } ], "analyses": { "subjects": [ "47A25", "47A12" ], "keywords": [ "spectral set", "numerical range", "crouzeix-palencia proof", "abstract functional-analysis lemma", "hilbert-space operator" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }