{ "id": "1708.08528", "version": "v1", "published": "2017-08-28T21:14:50.000Z", "updated": "2017-08-28T21:14:50.000Z", "title": "Crystallographic Tilings", "authors": [ "Hawazin Alzahrani", "Thomas Eckl" ], "comment": "29 pages, 7 figures", "categories": [ "math.DS" ], "abstract": "Crystallographic tilings of the Euclidean space $\\mathbb{E}^n$ are defined as simple tilings whose group of isometric automorphisms is crystallographic. To classify crystallographic tilings by their automorphism groups it is necessary to extend the standard equivalence relation of mutual local derivability to a version taking more general isometries than translations into account. This also requires the extension of the standard metrics on tiling spaces. Finally, a tiling with a given crystallographic group as automorphism group is constructed.", "revisions": [ { "version": "v1", "updated": "2017-08-28T21:14:50.000Z" } ], "analyses": { "keywords": [ "automorphism group", "standard equivalence relation", "mutual local derivability", "isometric automorphisms", "euclidean space" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }