{ "id": "1708.08128", "version": "v1", "published": "2017-08-27T19:53:43.000Z", "updated": "2017-08-27T19:53:43.000Z", "title": "The Baire classification of strongly separately continuous functions on $\\ell_\\infty$", "authors": [ "Olena Karlova", "Tomáš Visnyai" ], "categories": [ "math.GN" ], "abstract": "We prove that for any $\\alpha\\in[0,\\omega_1)$ there exists a strongly separately continuous function $f:\\ell_\\infty\\to [0,1]$ such that $f$ belongs to the $(\\alpha+1)$'th /$(\\alpha+2)$'th/ Baire class and does not belong to the $\\alpha$'th Baire class if $\\alpha$ is finite /infinite/.", "revisions": [ { "version": "v1", "updated": "2017-08-27T19:53:43.000Z" } ], "analyses": { "keywords": [ "strongly separately continuous function", "baire classification", "th baire class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }