{ "id": "1708.06646", "version": "v1", "published": "2017-08-22T14:35:55.000Z", "updated": "2017-08-22T14:35:55.000Z", "title": "Computing the poset of layers of a toric arrangement", "authors": [ "Matthias Lenz" ], "comment": "10 pages, 5 figures", "categories": [ "math.CO" ], "abstract": "A toric arrangement is an arrangement of subtori of codimension one in a real or complex torus. The poset of layers is the set of connected components of non-empty intersections of these subtori, partially ordered by reverse inclusion. In this note we present an algorithm that computes this poset in the central case.", "revisions": [ { "version": "v1", "updated": "2017-08-22T14:35:55.000Z" } ], "analyses": { "subjects": [ "05B35", "06A07", "06A11", "14N20", "52C35" ], "keywords": [ "toric arrangement", "complex torus", "non-empty intersections", "reverse inclusion", "central case" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }