{ "id": "1708.06341", "version": "v1", "published": "2017-08-21T17:57:39.000Z", "updated": "2017-08-21T17:57:39.000Z", "title": "Finite type multiple flag varieties of exceptional groups", "authors": [ "Dan Barbasch", "Sergio Da Silva", "Balázs Elek", "Gautam Gopal Krishnan" ], "comment": "11 pages, Sage code included in ancillary file", "categories": [ "math.RT", "math.AG" ], "abstract": "Consider a simple complex Lie group $G$ acting diagonally on a triple flag variety $G/P_1\\times G/P_2\\times G/P_3$, where $P_i$ is parabolic subgroup of $G$. We provide an algorithm for systematically checking when this action has finitely many orbits. We then use this method to give a complete classification for when $G$ is of type $F_4$. The $E_6, E_7,$ and $E_8$ cases will be treated in a subsequent paper.", "revisions": [ { "version": "v1", "updated": "2017-08-21T17:57:39.000Z" } ], "analyses": { "subjects": [ "22E46", "22E47", "14M15", "11S90" ], "keywords": [ "finite type multiple flag varieties", "exceptional groups", "simple complex lie group", "triple flag variety" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }