{ "id": "1708.05040", "version": "v1", "published": "2017-08-16T19:07:03.000Z", "updated": "2017-08-16T19:07:03.000Z", "title": "On the uniqueness of minimisers of Ginzburg-Landau functionals", "authors": [ "Radu Ignat", "Luc Nguyen", "Valeriy Slastikov", "Arghir Zarnescu" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We provide necessary and sufficient conditions for the uniqueness of minimisers of the Ginzburg-Landau functional for $\\mathbb{R}^n$-valued maps under a suitable convexity assumption on the potential and for $H^{1/2} \\cap L^\\infty$ boundary data that is non-negative in a fixed direction $e\\in \\mathbb{S}^{n-1}$. Furthermore, we show that, when minimisers are not unique, the set of minimisers is generated from any of its elements using appropriate orthogonal transformations of $\\mathbb{R}^n$. We also prove corresponding results for harmonic maps", "revisions": [ { "version": "v1", "updated": "2017-08-16T19:07:03.000Z" } ], "analyses": { "keywords": [ "ginzburg-landau functional", "minimisers", "uniqueness", "appropriate orthogonal transformations", "harmonic maps" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }