{ "id": "1708.04974", "version": "v1", "published": "2017-08-14T20:22:58.000Z", "updated": "2017-08-14T20:22:58.000Z", "title": "A fast coset-translation algorithm for computing the cycle structure of Comer relation algebras over $\\mathbb{Z}/p\\mathbb{Z}$", "authors": [ "Jeremy F. Alm", "Andrew Ylvisaker" ], "categories": [ "math.CO", "cs.DS" ], "abstract": "Proper relation algebras can be constructed using $\\mathbb{Z}/p\\mathbb{Z}$ as a base set using a method due to Comer. The cycle structure of such an algebra must, in general, be determined \\emph{a posteriori}, normally with the aid of a computer. In this paper, we give an improved algorithm for checking the cycle structure that reduces the time complexity from $\\mathcal{O}(p^2)$ to $\\mathcal{O}(p)$.", "revisions": [ { "version": "v1", "updated": "2017-08-14T20:22:58.000Z" } ], "analyses": { "subjects": [ "03G15", "11Y16" ], "keywords": [ "cycle structure", "fast coset-translation algorithm", "comer relation algebras", "proper relation algebras", "time complexity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }