{ "id": "1708.04800", "version": "v1", "published": "2017-08-16T08:21:33.000Z", "updated": "2017-08-16T08:21:33.000Z", "title": "Number systems over orders", "authors": [ "Attila Pethő", "Jörg Thuswaldner" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{K}$ be a number field of degree $k$ and let $\\mathcal{O}$ be an order in $\\mathbb{K}$. A generalized number system over $\\mathcal{O}$ (GNS for short) is a pair $(p,\\mathcal{D})$ where $p \\in \\mathcal{O}[x]$ is monic and $\\mathcal{D}\\subset\\mathcal{O}$ is a complete residue system modulo $p(0)$. If each $a \\in \\mathcal{O}[x]$ admits a representation of the form $a \\equiv \\sum_{j =0}^{\\ell-1} d_j x^j \\pmod{p}$ with $\\ell\\in\\mathbb{N}$ and $d_0,\\ldots, d_{\\ell-1}\\in\\mathcal{D}$ then the GNS $(p,\\mathcal{D})$ is said to have the finiteness property. Using fundamental domains $\\mathcal{F}$ of the action of $\\mathbb{Z}^k$ on $\\mathbb{R}^k$ we define classes $\\mathcal{G}_\\mathcal{F} := \\{ (p, D_\\mathcal{F}) \\;:\\; p \\in \\mathcal{O}[x] \\}$ of GNS whose digit sets $D_\\mathcal{F}$ are defined in terms of $\\mathcal{F}$ in a natural way. We are able to prove general results on the finiteness property of GNS in $\\mathcal{G}_\\mathcal{F}$ by giving an abstract version of the well-known \"dominant condition\" on the absolute coefficient $p(0)$ of $p$. In particular, depending on mild conditions on the topology of $\\mathcal{F}$ we characterize the finiteness property of $(p(x\\pm m), D_\\mathcal{F})$ for fixed $p$ and large $m\\in\\mathbb{N}$. Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.", "revisions": [ { "version": "v1", "updated": "2017-08-16T08:21:33.000Z" } ], "analyses": { "subjects": [ "11A63", "52C22" ], "keywords": [ "finiteness property", "general results", "number field", "complete residue system modulo", "power integral bases" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }