{ "id": "1708.04674", "version": "v1", "published": "2017-08-15T20:16:37.000Z", "updated": "2017-08-15T20:16:37.000Z", "title": "A Meyniel-type condition for bipancyclicity in balanced bipartite digraphs", "authors": [ "Janusz Adamus" ], "comment": "Comments are welcome!", "categories": [ "math.CO" ], "abstract": "We prove that a strongly connected balanced bipartite digraph $D$ of order $2a$, $a\\geq3$, satisfying $d(u)+d(v)\\geq 3a$ for every pair of vertices $u,v$ with a common in-neighbour or a common out-neighbour, is either bipancyclic or a directed cycle of length $2a$.", "revisions": [ { "version": "v1", "updated": "2017-08-15T20:16:37.000Z" } ], "analyses": { "subjects": [ "05C20", "05C38", "05C45" ], "keywords": [ "meyniel-type condition", "bipancyclicity", "strongly connected balanced bipartite digraph", "common in-neighbour", "common out-neighbour" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }