{ "id": "1708.04467", "version": "v1", "published": "2017-08-15T11:55:45.000Z", "updated": "2017-08-15T11:55:45.000Z", "title": "Well-posedness of the martingale problem for non-local perturbations of Lévy-type generators", "authors": [ "Peng Jin" ], "comment": "25 pages", "categories": [ "math.PR" ], "abstract": "Let $L$ be a L\\'evy-type generator whose L\\'evy measure is controlled from below by that of a non-degenerate $\\alpha$-stable ($0<\\alpha<2$) process. In this paper, we study the martingale problem for the operator $\\mathcal{L}_{t}=L+K_{t}$, with $K_{t}$ being a time-dependent non-local operator defined by \\[ K_{t}f(x):=\\int_{\\mathbb{R}^{d}\\backslash\\{0\\}}[f(x+y)-f(x)-\\mathbf{1}_{\\alpha>1}\\mathbf{1}_{\\{|y|\\le1\\}}y\\cdot\\nabla f(x)]M(t,x,dy), \\] where $M(t,x,\\cdot)$ is a L\\'evy measure on $\\mathbb{R}^{d}\\backslash\\{0\\}$ for each $(t,x)\\in \\mathbb{R}_+ \\times \\mathbb{R}^{d}$. We show that if \\[ \\sup_{t\\geq0,x\\in\\mathbb{R}^{d}}\\int_{\\mathbb{R}^{d}\\backslash\\{0\\}}1\\wedge|y|^{\\beta}M(t,x,dy)<\\infty \\] for some $0<\\beta<\\alpha$, then the martingale problem for $\\mathcal{L}_{t}$ is well-posed.", "revisions": [ { "version": "v1", "updated": "2017-08-15T11:55:45.000Z" } ], "analyses": { "subjects": [ "60J75", "60J35" ], "keywords": [ "martingale problem", "non-local perturbations", "lévy-type generators", "well-posedness", "levy measure" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }