{ "id": "1708.04197", "version": "v1", "published": "2017-08-14T16:16:53.000Z", "updated": "2017-08-14T16:16:53.000Z", "title": "On Drinfeld modular forms of higher rank II", "authors": [ "Ernst-Ulrich Gekeler" ], "categories": [ "math.NT" ], "abstract": "We show that the absolute value $|f|$ of an invertible holomorphic function $f$ on the Drinfeld symmetric space $\\OM^r$ $(r \\geq 2)$ is constant on fibers of the building map to the Bruhat-Tits building $\\MB\\MT$. Its logarithm $\\log|f|$ is an affine map on the realization of $\\MB\\MT$. These results are used to study the vanishing loci of modular forms (coefficient forms, Eisenstein series, para-Eisenstein series) and to determine their images in $\\MB\\MT$.", "revisions": [ { "version": "v1", "updated": "2017-08-14T16:16:53.000Z" } ], "analyses": { "subjects": [ "11F52", "14G22" ], "keywords": [ "drinfeld modular forms", "higher rank", "drinfeld symmetric space", "para-eisenstein series", "absolute value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }