{ "id": "1708.03965", "version": "v1", "published": "2017-08-13T21:16:27.000Z", "updated": "2017-08-13T21:16:27.000Z", "title": "Sensitive dependence of geometric Gibbs states", "authors": [ "Daniel Coronel", "Juan Rivera-Letelier" ], "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "For quadratic-like maps, we show a phenomenon of sensitive dependence of geometric Gibbs states: There are analytic families of quadratic-like maps for which an arbitrarily small perturbation of the parameter can have a definite effect on the low-temperature geometric Gibbs states. Furthermore, this phenomenon is robust: There is an open set of analytic 2-parameter families of quadratic-like maps that exhibit sensitive dependence of geometric Gibbs states. We introduce a geometric version of the Peierls condition for contour models ensuring that the low-temperature Gibbs states are concentrated near the critical orbit.", "revisions": [ { "version": "v1", "updated": "2017-08-13T21:16:27.000Z" } ], "analyses": { "keywords": [ "sensitive dependence", "quadratic-like maps", "low-temperature geometric gibbs states", "low-temperature gibbs states", "analytic families" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }