{ "id": "1708.03932", "version": "v1", "published": "2017-08-13T16:53:14.000Z", "updated": "2017-08-13T16:53:14.000Z", "title": "Poincare Inequalities and Neumann Problems for the p-Laplacian", "authors": [ "David Cruz-Uribe", "Scott Rodney", "Emily Rosta" ], "categories": [ "math.AP" ], "abstract": "We prove an equivalence between weighted Poincare inequalities and the existence of weak solutions to a Neumann problem related to a degenerate p- Laplacian. The Poincare inequalities are formulated in the context of degenerate Sobolev spaces defined in terms of a quadratic form, and the associated matrix is the source of the degeneracy in the p-Laplacian.", "revisions": [ { "version": "v1", "updated": "2017-08-13T16:53:14.000Z" } ], "analyses": { "keywords": [ "neumann problem", "p-laplacian", "degenerate sobolev spaces", "weak solutions", "weighted poincare inequalities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }