{ "id": "1708.03789", "version": "v1", "published": "2017-08-12T15:49:17.000Z", "updated": "2017-08-12T15:49:17.000Z", "title": "The medians for exponential families and the normal law", "authors": [ "Gerard Letac", "Mauro Piccioni" ], "categories": [ "math.PR" ], "abstract": "Let $P$ a probability on the real line generating a natural exponential family $(P_t)_{t\\in \\R}$. The property that $t$ is a median of $P_t$ for all $t$ is fulfilled by the standard Gaussian law $N(0.1).$ We show that this property is stable in the sense that if $P$ has a bounded density with respect to $N(0,1)$ then $P=N(0,1).$", "revisions": [ { "version": "v1", "updated": "2017-08-12T15:49:17.000Z" } ], "analyses": { "keywords": [ "normal law", "standard gaussian law", "probability", "natural exponential family", "real line generating" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }