{ "id": "1708.03695", "version": "v1", "published": "2017-08-11T20:32:32.000Z", "updated": "2017-08-11T20:32:32.000Z", "title": "Large Deviation Principle for $S$-unimodal maps with flat critical point", "authors": [ "Yong Moo Chung", "Hiroki Takahasi" ], "comment": "16 pages, no figure", "categories": [ "math.DS", "math.PR" ], "abstract": "We study a topologically exact, negative Schwarzian unimodal map whose critical point is non-recurrent and flat. Assuming the critical order is either logarithmic or polynomial, we establish the Large Deviation Principle. A key ingredient is an inducing scheme equipped with a specification-like property.", "revisions": [ { "version": "v1", "updated": "2017-08-11T20:32:32.000Z" } ], "analyses": { "subjects": [ "37C40", "37C45", "37D25", "37D35", "37E05", "60F10" ], "keywords": [ "large deviation principle", "flat critical point", "negative schwarzian unimodal map", "topologically exact", "non-recurrent" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }