{ "id": "1708.03455", "version": "v1", "published": "2017-08-11T07:16:50.000Z", "updated": "2017-08-11T07:16:50.000Z", "title": "A new construction of universal spaces for asymptotic dimension", "authors": [ "G. C. Bell", "A. Nagórko" ], "journal": "Topology and its Applications Volume 160, Issue 1, Pages 159-169 (2013)", "doi": "10.1016/j.topol.2012.10.016", "categories": [ "math.GT" ], "abstract": "For each $n$, we construct a separable metric space $\\mathbb{U}_n$ that is universal in the coarse category of separable metric spaces with asymptotic dimension ($\\mathop{asdim}$) at most $n$ and universal in the uniform category of separable metric spaces with uniform dimension ($\\mathop{udim}$) at most $n$. Thus, $\\mathbb{U}_n$ serves as a universal space for dimension $n$ in both the large-scale and infinitesimal topology. More precisely, we prove: \\[ \\mathop{asdim} \\mathbb{U}_n = \\mathop{udim} \\mathbb{U}_n = n \\] and such that for each separable metric space $X$, a) if $\\mathop{asdim} X \\leq n$, then $X$ is coarsely equivalent to a subset of $\\mathbb{U}_n$; b) if $\\mathop{udim} X \\leq n$, then $X$ is uniformly homeomorphic to a subset of $\\mathbb{U}_n$.", "revisions": [ { "version": "v1", "updated": "2017-08-11T07:16:50.000Z" } ], "analyses": { "subjects": [ "54F45", "54E15" ], "keywords": [ "separable metric space", "asymptotic dimension", "universal space", "construction", "infinitesimal topology" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }