{ "id": "1708.03245", "version": "v1", "published": "2017-08-10T14:57:18.000Z", "updated": "2017-08-10T14:57:18.000Z", "title": "Finite $p$-Groups of Nilpotency Class $3$ with Two Conjugacy Class Sizes", "authors": [ "Tushar Kanta Naik", "Rahul Dattatraya Kitture", "Manoj K. Yadav" ], "categories": [ "math.GR" ], "abstract": "It is proved that, for a prime $p>2$ and integer $n\\geq 1$, finite $p$-groups of nilpotency class $3$ and having only two conjugacy class sizes $1$ and $p^n$ exist if and only if $n$ is even; moreover, for a given even positive integer, such a group is unique up to isoclinism (in the sense of Philip Hall).", "revisions": [ { "version": "v1", "updated": "2017-08-10T14:57:18.000Z" } ], "analyses": { "subjects": [ "20D15", "20E45" ], "keywords": [ "conjugacy class sizes", "nilpotency class", "philip hall", "isoclinism" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }