{ "id": "1708.03028", "version": "v1", "published": "2017-08-09T22:37:40.000Z", "updated": "2017-08-09T22:37:40.000Z", "title": "Improved Moser--Trudinger inequality for functions with mean value zero in $\\mathbb R^n$ and its extremal functions", "authors": [ "Van Hoang Nguyen" ], "comment": "24 pages, to appear in Nonlinear Analysis", "categories": [ "math.FA", "math.AP" ], "abstract": "Let $\\Omega$ be a bounded smooth domain in $\\mathbb R^n$, $W^{1,n}(\\Omega)$ be the Sobolev space on $\\Omega$, and $\\lambda(\\Omega) = \\inf\\{\\|\\nabla u\\|_n^n: \\int_\\Omega u dx =0, \\|u\\|_n =1\\}$ be the first nonzero Neumann eigenvalue of the $n-$Laplace operator $-\\Delta_n$ on $\\Omega$. For $0 \\leq \\alpha < \\lambda(\\Omega)$, let us define $\\|u\\|_{1,\\alpha}^n =\\|\\nabla u\\|_n^n -\\alpha \\|u\\|_n^n$. We prove, in this paper, the following improved Moser--Trudinger inequality on functions with mean value zero on $\\Omega$, \\[ \\sup_{u\\in W^{1,n}(\\Omega), \\int_\\Omega u dx =0, \\|u\\|_{1,\\alpha} =1} \\int_{\\Omega} e^{\\beta_n |u|^{\\frac n{n-1}}} dx < \\infty, \\] where $\\beta_n = n (\\omega_{n-1}/2)^{1/(n-1)}$, and $\\omega_{n-1}$ denotes the surface area of unit sphere in $\\mathbb R^n$. We also show that this supremum is attained by some function $u^*\\in W^{1,n}(\\Omega)$ such that $\\int_\\Omega u^* dx =0$ and $\\|u^*\\|_{1,\\alpha} =1$. This generalizes a result of Ngo and Nguyen \\cite{NN17} in dimension two and a result of Yang \\cite{Yang07} for $\\alpha=0$, and improves a result of Cianchi \\cite{Cianchi05}.", "revisions": [ { "version": "v1", "updated": "2017-08-09T22:37:40.000Z" } ], "analyses": { "subjects": [ "46E35", "26D10" ], "keywords": [ "mean value zero", "moser-trudinger inequality", "extremal functions", "first nonzero neumann eigenvalue", "laplace operator" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }