{ "id": "1708.02441", "version": "v1", "published": "2017-08-08T10:38:18.000Z", "updated": "2017-08-08T10:38:18.000Z", "title": "Cycle reversions and dichromatic number in tournaments", "authors": [ "Paul Ellis", "Daniel T. Soukup" ], "comment": "23 pages, first public version. Comments are very welcome", "categories": [ "math.CO", "math.LO" ], "abstract": "We show that if $D$ is a tournament of arbitrary size then $D$ has finite strong components after reversing a locally finite sequence of cycles. In turn, we prove that any tournament can be covered by two acyclic sets after reversing a locally finite sequence of cycles. This provides a partial solution to a conjecture of S. Thomass\\'e.", "revisions": [ { "version": "v1", "updated": "2017-08-08T10:38:18.000Z" } ], "analyses": { "subjects": [ "05C20", "05C63", "05C15", "05C38", "03E05" ], "keywords": [ "dichromatic number", "cycle reversions", "tournament", "locally finite sequence", "finite strong components" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }