{ "id": "1708.02115", "version": "v1", "published": "2017-08-07T13:41:59.000Z", "updated": "2017-08-07T13:41:59.000Z", "title": "Small data global solutions for the Camassa-Choi equations", "authors": [ "Benjamin Harrop-Griffiths", "Jeremy L. Marzuola" ], "comment": "35 pages, 4 figures, comments welcome!", "categories": [ "math.AP" ], "abstract": "We consider solutions to the Cauchy problem for an internal-wave model derived by Camassa-Choi in a paper in Journal of Fluid Mechanics (1996). This model is a natural generalization of the Benjamin-Ono and Intermediate Long Wave equations in the case of weak transverse effects. We prove the existence and long-time dynamics of global solutions from small, smooth, spatially localized initial data on $\\mathbb{R}^2$.", "revisions": [ { "version": "v1", "updated": "2017-08-07T13:41:59.000Z" } ], "analyses": { "subjects": [ "35Q35", "76B55" ], "keywords": [ "small data global solutions", "camassa-choi equations", "intermediate long wave equations", "weak transverse effects", "internal-wave model" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }