{ "id": "1708.01795", "version": "v1", "published": "2017-08-05T17:57:31.000Z", "updated": "2017-08-05T17:57:31.000Z", "title": "Multiplicative slices, relativistic Toda and shifted quantum affine algebras", "authors": [ "Michael Finkelberg", "Alexander Tsymbaliuk" ], "comment": "125 pages", "categories": [ "math.RT", "math-ph", "math.AG", "math.MP", "math.QA" ], "abstract": "We introduce the shifted quantum affine algebras. They map homomorphically into the quantized Coulomb branches of $4d\\ {\\mathcal N}=2$ SUSY quiver gauge theories. In type $A$, they are endowed with a coproduct, and they act on the equivariant $K$-theory of parabolic Laumon spaces. In type $A_1$, they are closely related to the open relativistic quantum Toda of type $A$.", "revisions": [ { "version": "v1", "updated": "2017-08-05T17:57:31.000Z" } ], "analyses": { "keywords": [ "shifted quantum affine algebras", "relativistic toda", "multiplicative slices", "susy quiver gauge theories", "open relativistic quantum toda" ], "note": { "typesetting": "TeX", "pages": 125, "language": "en", "license": "arXiv", "status": "editable" } } }