{ "id": "1708.01607", "version": "v1", "published": "2017-08-04T17:58:30.000Z", "updated": "2017-08-04T17:58:30.000Z", "title": "Partite Saturation of Complete Graphs", "authors": [ "António Girão", "Teeradej Kittipassorn", "Kamil Popielarz" ], "comment": "18 pages", "categories": [ "math.CO" ], "abstract": "We study the problem of determining the minimum number of edges $sat(n,k,r)$ in a $k$-partite graph with $k$ parts, each of size $n$, such that it is $K_r$-free but the addition of an edge joining any two non-adjacent vertices from different parts creates a $K_r$. Improving on recent results of Ferrara, Jacobson, Pfender and Wenger, and generalizing a recent result of Roberts, we prove that $sat(n,k,r) = \\alpha(k,r)n + o(n)$ where an explicit description of $\\alpha(k,r)$ is given. Moreover, we give the bounds \\[ k(2r-4) \\le \\alpha(k,r) \\le \\begin{cases} (k-1)(4r-k-6) &\\text{ for }r \\le k \\le 2r-3, \\\\(k-1)(2r-3) &\\text{ for }k \\ge 2r-3. \\end{cases} \\] and show that the lower bound is tight for infinitely many values of $r$ and every $k\\geq 2r-1$. This allows us to determine $sat(n,k,r) = k(2r-4)n + C_{k,r}$ up to an additive constant for those values of $k$ and $r$. Along the way, we disprove a conjecture and answer a question of the first set of authors mentioned above.", "revisions": [ { "version": "v1", "updated": "2017-08-04T17:58:30.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "complete graphs", "partite saturation", "first set", "minimum number", "parts creates" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }