{ "id": "1708.01331", "version": "v1", "published": "2017-08-03T23:54:04.000Z", "updated": "2017-08-03T23:54:04.000Z", "title": "Multispike solutions for the Brezis-Nirenberg problem in dimension three", "authors": [ "M. Musso", "D. Salazar" ], "comment": "38 pages", "categories": [ "math.AP" ], "abstract": "We consider the problem $\\Delta u + \\lambda u +u^5 = 0$, $u>0$, in a smooth bounded domain $\\Omega$ in ${\\mathbb R}^3$, under zero Dirichlet boundary conditions. We obtain solutions to this problem exhibiting multiple bubbling behavior at $k$ different points of the domain as $\\lambda$ tends to a special positive value $\\lambda_0$, which we characterize in terms of the Green function of $-\\Delta - \\lambda$.", "revisions": [ { "version": "v1", "updated": "2017-08-03T23:54:04.000Z" } ], "analyses": { "subjects": [ "35J25", "35J66" ], "keywords": [ "brezis-nirenberg problem", "multispike solutions", "zero dirichlet boundary conditions", "problem exhibiting multiple bubbling behavior", "special positive value" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }