{ "id": "1708.01326", "version": "v1", "published": "2017-08-03T22:46:36.000Z", "updated": "2017-08-03T22:46:36.000Z", "title": "On bilinear Hilbert transform along two polynomials", "authors": [ "Dong Dong" ], "comment": "submitted", "categories": [ "math.CA" ], "abstract": "We prove that the bilinear Hilbert transform along two polynomials $B_{P,Q}(f,g)(x)=\\int_{\\mathbb{R}}f(x-P(t))g(x-Q(t))\\frac{dt}{t}$ is bounded from $L^p \\times L^q$ to $L^r$ for a large range of $(p,q,r)$, as long as the polynomials $P$ and $Q$ have distinct leading and trailing degrees. The same boundedness property holds for the corresponding bilinear maximal function $\\mathcal{M}_{P,Q}(f,g)(x)=\\sup_{\\epsilon>0}\\frac{1}{2\\epsilon}\\int_{-\\epsilon}^{\\epsilon} |f(x-P(t))g(x-Q(t))|dt$.", "revisions": [ { "version": "v1", "updated": "2017-08-03T22:46:36.000Z" } ], "analyses": { "subjects": [ "42B20", "47B38" ], "keywords": [ "bilinear hilbert transform", "polynomials", "boundedness property holds", "corresponding bilinear maximal function", "large range" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }