{ "id": "1708.01211", "version": "v1", "published": "2017-08-03T16:56:51.000Z", "updated": "2017-08-03T16:56:51.000Z", "title": "A Ramsey Property of Random Regular and $k$-out Graphs", "authors": [ "Michael Anastos", "Deepak Bal" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "In this note we consider a Ramsey property of random $d$-regular graphs, $\\mathcal{G}(n,d)$. Let $r\\ge 2$ be fixed. Then w.h.p. the edges of $\\mathcal{G}(n, 2r)$ can be colored such that every monochromatic component has size $o(n)$. On the other hand, there exists a constant $\\gamma > 0$ such that w.h.p., every $r$-coloring of the edges of $\\mathcal{G}(n, 2r+1)$ must contain a monochromatic cycle of length at least $\\gamma n$. We prove an analogous result for random $k$-out graphs.", "revisions": [ { "version": "v1", "updated": "2017-08-03T16:56:51.000Z" } ], "analyses": { "keywords": [ "ramsey property", "random regular", "monochromatic cycle", "regular graphs", "monochromatic component" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }