{ "id": "1708.01174", "version": "v1", "published": "2017-08-03T15:08:49.000Z", "updated": "2017-08-03T15:08:49.000Z", "title": "Hodge numbers of Landau-Ginzburg models", "authors": [ "Andrew Harder" ], "comment": "Comments welcome!", "categories": [ "math.AG" ], "abstract": "We study the Hodge numbers of Landau-Ginzburg models as defined by Katzarkov, Kontsevich and Pantev. First we show that these numbers can be computed using ordinary mixed Hodge theory, then we give a concrete recipe for computing these numbers for the Landau-Ginzburg mirrors of Fano threefolds. We finish by proving that for a crepant resolution of a Gorenstein toric Fano threefold $X$ there is a natural LG mirror $(Y,\\mathsf{w})$ so that $h^{p,q}(X) = f^{3-q,p}(Y,\\mathsf{w})$.", "revisions": [ { "version": "v1", "updated": "2017-08-03T15:08:49.000Z" } ], "analyses": { "subjects": [ "14J33", "14D07", "14D06" ], "keywords": [ "hodge numbers", "landau-ginzburg models", "gorenstein toric fano threefold", "natural lg mirror", "ordinary mixed hodge theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }