{ "id": "1708.00900", "version": "v1", "published": "2017-08-02T19:11:19.000Z", "updated": "2017-08-02T19:11:19.000Z", "title": "Fractional differentiability for solutions of the inhomogenous $p$-Laplace system", "authors": [ "Michał Miśkiewicz" ], "comment": "10 pages", "categories": [ "math.AP" ], "abstract": "It is shown that if $p \\ge 3$ and $u \\in W^{1,p}(\\Omega,\\mathbb{R}^N)$ solves the inhomogenous $p$-Laplace system \\[ \\operatorname{div} (|\\nabla u|^{p-2} \\nabla u) = f, \\qquad f \\in W^{1,p'}(\\Omega,\\mathbb{R}^N), \\] then locally the gradient $\\nabla u$ lies in the fractional Nikol'skii space $\\mathcal{N}^{\\theta,2/\\theta}$ with any $\\theta \\in [ \\tfrac{2}{p}, \\tfrac{2}{p-1} )$. To the author's knowledge, this result is new even in the case of $p$-harmonic functions, slightly improving known $\\mathcal{N}^{2/p,p}$ estimates. The method used here is an extension of the one used by A. Cellina in the case $2 \\le p < 3$ to show $W^{1,2}$ regularity.", "revisions": [ { "version": "v1", "updated": "2017-08-02T19:11:19.000Z" } ], "analyses": { "subjects": [ "35B65", "35J92" ], "keywords": [ "laplace system", "fractional differentiability", "inhomogenous", "fractional nikolkii space", "harmonic functions" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }