{ "id": "1707.09200", "version": "v1", "published": "2017-07-28T11:54:25.000Z", "updated": "2017-07-28T11:54:25.000Z", "title": "Entropy numbers in $γ$-Banach spaces", "authors": [ "Thanatkrit Kaewtem" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "Let $X$ be a quasi-Banach space, $Y$ a $\\gamma$-Banach space $(0<\\gamma \\leq 1)$ and $T$ a bounded linear operator from $X$ into $Y$. In this paper, we prove that the first outer entropy number of $T$ lies between $2^{1-1/\\gamma}\\|T\\|$ and $\\|T\\|$; more precisely, $2^{1-1/\\gamma}\\|T\\| \\leq e_1(T) \\leq \\|T\\|,$ and the constant $2^{1-1/\\gamma}$ is sharp. Moreover, we show that there exist a Banach space $X_0$, a $\\gamma$-Banach space $Y_0$ and a bounded linear operator $T_0:X_0 \\rightarrow Y_0$ such that $0 \\neq e_k(T_0) = 2^{1-1/\\gamma}\\|T_0\\| $ for all positive integers $k.$ Finally, the paper also provides two-sided estimates for entropy numbers of embeddings between finite dimensional symmetric $\\gamma$-Banach spaces.", "revisions": [ { "version": "v1", "updated": "2017-07-28T11:54:25.000Z" } ], "analyses": { "subjects": [ "47B06", "46B45" ], "keywords": [ "bounded linear operator", "first outer entropy number", "finite dimensional symmetric", "quasi-banach space", "embeddings" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }