{ "id": "1707.08929", "version": "v1", "published": "2017-07-27T16:49:47.000Z", "updated": "2017-07-27T16:49:47.000Z", "title": "A Koksma-Hlawka-Potential Identity on the $d$ Dimensional Sphere and its Applications to Discrepancy", "authors": [ "S. B. Damelin" ], "comment": "Version: 7.27.17", "categories": [ "math.CA" ], "abstract": "Let $d\\geq 2$ be an integer, $S^d\\subset {\\mathbb R}^{d+1}$ the unit sphere and $\\sigma$ a finite signed measure whose positive and negative parts are supported on $S^d$ with finite energy. In this paper, we derive an error estimate for the quantity $\\left|\\int_{S^d}fd\\sigma\\right|$, for a class of harmonic functions $f:\\mathbb R^{d+1}\\to \\mathbb R$. Our error estimate involves 2 sided bounds for a Newtonian potential with respect to $\\sigma$ away from its support. In particular, our main result allows us to study quadrature errors, for scatterings on the sphere with given mesh norm.", "revisions": [ { "version": "v1", "updated": "2017-07-27T16:49:47.000Z" } ], "analyses": { "subjects": [ "11K36", "65D32", "41A35", "41A63", "26D10", "11E12", "31A05", "31B15", "33C55" ], "keywords": [ "dimensional sphere", "koksma-hlawka-potential identity", "applications", "discrepancy", "error estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }