{ "id": "1707.07786", "version": "v1", "published": "2017-07-25T01:35:51.000Z", "updated": "2017-07-25T01:35:51.000Z", "title": "Chaotic dynamics of minimal center of attraction for a flow with discrete amenable phase group", "authors": [ "Zhijing Chen", "Xiongping Dai" ], "comment": "15 pages; to appear in JMAA", "categories": [ "math.DS", "math.GN" ], "abstract": "Let $G$ be a discrete infinite amenable group, which acts from the left on a compact metric space $X$. In this paper, we study the chaotic dynamics exhibited inside and near a minimal center of attraction of $(G,X)$ relative to any F{\\o}lner net in $G$.", "revisions": [ { "version": "v1", "updated": "2017-07-25T01:35:51.000Z" } ], "analyses": { "subjects": [ "37B20", "37B05", "54H20" ], "keywords": [ "discrete amenable phase group", "minimal center", "chaotic dynamics", "attraction", "discrete infinite amenable group" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }