{ "id": "1707.07573", "version": "v1", "published": "2017-07-24T14:31:19.000Z", "updated": "2017-07-24T14:31:19.000Z", "title": "A note on the van der Waerden complex", "authors": [ "Becky Hooper", "Adam Van Tuyl" ], "comment": "7 pages", "categories": [ "math.CO", "math.AC" ], "abstract": "Ehrenborg, Govindaiah, Park, and Readdy recently introduced the van der Waerden complex, a pure simplicial complex whose facets correspond to arithmetic progressions. Using techniques from combinatorial commutative algebra, we classify when these pure simplicial complexes are vertex decomposable or not Cohen-Macaulay. As a corollary, we classify the van der Waerden complexes that are shellable.", "revisions": [ { "version": "v1", "updated": "2017-07-24T14:31:19.000Z" } ], "analyses": { "subjects": [ "05E45", "13F55" ], "keywords": [ "van der waerden complex", "pure simplicial complex", "arithmetic progressions", "facets correspond", "combinatorial commutative algebra" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }