{ "id": "1707.07458", "version": "v1", "published": "2017-07-24T09:58:38.000Z", "updated": "2017-07-24T09:58:38.000Z", "title": "On the number of linear spaces on hypersurfaces with a prescribed discriminant", "authors": [ "Julia Brandes" ], "categories": [ "math.NT" ], "abstract": "For a given form $F\\in \\mathbb Z[x_1,\\dots,x_s]$ we apply the circle method in order to give an asymptotic estimate of the number of $m$-tuples $\\mathbf x_1, \\dots, \\mathbf x_m$ spanning a linear space on the hypersurface $F(\\mathbf x) = 0$ with the property that $\\det ( (\\mathbf x_1, \\dots, \\mathbf x_m)^t \\, (\\mathbf x_1, \\dots, \\mathbf x_m)) = b$. This allows us in some measure to count rational linear spaces on hypersurfaces whose underlying integer lattice is primitive.", "revisions": [ { "version": "v1", "updated": "2017-07-24T09:58:38.000Z" } ], "analyses": { "subjects": [ "11D72", "11E76", "11P55" ], "keywords": [ "prescribed discriminant", "hypersurface", "count rational linear spaces", "asymptotic estimate", "circle method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }