{ "id": "1707.07079", "version": "v1", "published": "2017-07-22T00:29:29.000Z", "updated": "2017-07-22T00:29:29.000Z", "title": "Existence and nonexistence of positive solutions to some fully nonlinear equation in one dimension", "authors": [ "Patricio Felmer", "Norihisa Ikoma" ], "comment": "29 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we consider the existence (and nonexistence) of solutions to \\[ -\\mathcal{M}_{\\lambda,\\Lambda}^\\pm (u'') + V(x) u = f(u) \\quad {\\rm in} \\ \\mathbf{R} \\] where $\\mathcal{M}_{\\lambda,\\Lambda}^+$ and $\\mathcal{M}_{\\lambda,\\Lambda}^-$ denote the Pucci operators with $0< \\lambda \\leq \\Lambda < \\infty$, $V(x)$ is a bounded function, $f(s)$ is a continuous function and its typical example is a power-type nonlinearity $f(s) =|s|^{p-1}s$ $(p>1)$. In particular, we are interested in positive solutions which decay at infinity, and the existence (and nonexistence) of such solutions is proved.", "revisions": [ { "version": "v1", "updated": "2017-07-22T00:29:29.000Z" } ], "analyses": { "keywords": [ "fully nonlinear equation", "positive solutions", "nonexistence", "pucci operators", "power-type nonlinearity" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }