{ "id": "1707.07022", "version": "v1", "published": "2017-07-21T19:02:21.000Z", "updated": "2017-07-21T19:02:21.000Z", "title": "Homotopy types of gauge groups related to $S^3$-bundles over $S^4$", "authors": [ "Ingrid Membrillo-Solis" ], "comment": "18 pages", "categories": [ "math.AT" ], "abstract": "Let $M$ be the total space of an $S^3$-bundle over $S^4$ and $G$ be a simply connected simple compact Lie group. If the integral homology of $M$ is torsion free we describe the homotopy type of the gauge groups over $M$ as products of recognisable spaces. For any manifold $M$ with non torsion free homology, we give a $p$-local homotopy decomposition, $p\\geq 5$, of the loop space of the gauge groups.", "revisions": [ { "version": "v1", "updated": "2017-07-21T19:02:21.000Z" } ], "analyses": { "subjects": [ "54C35", "55P15", "55R10", "55R25" ], "keywords": [ "gauge groups", "homotopy type", "connected simple compact lie group", "non torsion free homology", "local homotopy decomposition" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }