{ "id": "1707.06612", "version": "v1", "published": "2017-07-20T17:08:26.000Z", "updated": "2017-07-20T17:08:26.000Z", "title": "On deformations of pairs (manifold, coherent sheaf)", "authors": [ "Donatella Iacono", "Marco Manetti" ], "categories": [ "math.AG" ], "abstract": "We analyse infinitesimal deformations of pairs $(X,\\mathcal{F})$ with $\\mathcal{F}$ a coherent sheaf on a smooth projective manifold $X$ over an algebraic closed field of characteristic $0$. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai-Artamkin Theorem about the trace map.", "revisions": [ { "version": "v1", "updated": "2017-07-20T17:08:26.000Z" } ], "analyses": { "subjects": [ "14D15", "17B70", "18G50", "13D10" ], "keywords": [ "coherent sheaf", "analyse infinitesimal deformations", "algebraic closed field", "trace map", "differential graded lie algebra controlling" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }