{ "id": "1707.06429", "version": "v1", "published": "2017-07-20T09:51:20.000Z", "updated": "2017-07-20T09:51:20.000Z", "title": "Ulrich bundles on non-special surfaces with $p_g=0$ and $q=1$", "authors": [ "Gianfranco Casnati" ], "comment": "14 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $S$ be a surface with $p_g(S)=0$, $q(S)=1$ and endowed with a very ample line bundle $\\mathcal O_S(h)$ such that $h^1\\big(S,\\mathcal O_S(h)\\big)=0$. We show that such an $S$ supports families of dimension $p$ of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large $p$. Moreover, we show that $S$ supports stable Ulrich bundles of rank $2$ if the genus of the general element in $\\vert h\\vert$ is at least $2$.", "revisions": [ { "version": "v1", "updated": "2017-07-20T09:51:20.000Z" } ], "analyses": { "subjects": [ "14J60", "14J26", "14J27", "14J28" ], "keywords": [ "non-special surfaces", "ample line bundle", "supports stable ulrich bundles", "general element", "supports families" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }