{ "id": "1707.06223", "version": "v1", "published": "2017-07-19T17:59:22.000Z", "updated": "2017-07-19T17:59:22.000Z", "title": "Some universal quadratic sums over the integers", "authors": [ "Hai-Liang Wu", "Zhi-Wei Sun" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "Let $a,b,c,d,e,f\\in\\mathbb N$ with $a\\ge c\\ge e>0$, $b\\le a$ and $b\\equiv a\\pmod2$, $d\\le c$ and $d\\equiv c\\pmod2$, $f\\le e$ and $f\\equiv e\\pmod2$. If any nonnegative integer can be written as $x(ax+b)/2+y(cy+d)/2+z(ez+f)/2$ with $x,y,z\\in\\mathbb Z$, then the tuple $(a,b,c,d,e,f)$ is said to be universal over $\\mathbb Z$. Recently, Z.-W. Sun found all candidates of such universal tuples over $\\mathbb Z$. In this paper, we use the theory of ternary quadratic forms to show that 36 concrete tuples $(a,b,c,d,e,f)$ in Sun's list of candidates are indeed universal over $\\mathbb Z$. For example, we prove the universality of $(16,4,2,0,1,1)$ over $\\mathbb Z$ which is related to the famous form $x^2+y^2+32z^2$.", "revisions": [ { "version": "v1", "updated": "2017-07-19T17:59:22.000Z" } ], "analyses": { "subjects": [ "11E25", "11E20", "11D85" ], "keywords": [ "universal quadratic sums", "ternary quadratic forms", "suns list", "candidates", "universal tuples" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }