{ "id": "1707.06129", "version": "v1", "published": "2017-07-19T14:48:42.000Z", "updated": "2017-07-19T14:48:42.000Z", "title": "Conditioned local limit theorems for random walks defined on finite Markov chains", "authors": [ "Ion Grama", "Ronan Lauvergnat", "Emile Le Page" ], "categories": [ "math.PR" ], "abstract": "Let $(X_n)_{n\\geq 0}$ be a Markov chain with values in a finite state space $\\mathbb X$ starting at $X_0=x \\in \\mathbb X$ and let $f$ be a real function defined on $\\mathbb X$. Set $S_n=\\sum_{k=1}^{n} f(X_k)$, $n\\geqslant 1$. For any $y \\in \\mathbb R$ denote by $\\tau_y$ the first time when $y+S_n$ becomes non-positive. We study the asymptotic behaviour of the probability $\\mathbb P_x \\left( y+S_{n} \\in [z,z+a] \\,,\\, \\tau_y > n \\right)$ as $n\\to+\\infty.$ We first establish for this probability a conditional version of the local limit theorem of Stone. Then we find for it an asymptotic equivalent of order $n^{3/2}$ and give a generalization which is useful in applications. We also describe the asymptotic behaviour of the probability $\\mathbb P_x \\left( \\tau_y = n \\right)$ as $n\\to+\\infty$.", "revisions": [ { "version": "v1", "updated": "2017-07-19T14:48:42.000Z" } ], "analyses": { "subjects": [ "60J10", "60F05" ], "keywords": [ "conditioned local limit theorems", "finite markov chains", "random walks", "asymptotic behaviour", "probability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }