{ "id": "1707.04871", "version": "v1", "published": "2017-07-16T11:45:41.000Z", "updated": "2017-07-16T11:45:41.000Z", "title": "Cardinal Invariants for the $G_δ$ topology", "authors": [ "Angelo Bella", "Santi Spadaro" ], "categories": [ "math.GN" ], "abstract": "We prove upper bounds for the spread, the Lindel\\\"of number and the weak Lindel\\\"of number of the $G_\\delta$-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juh\\'asz and van Mill regarding the cardinality of a $\\sigma$-countably tight homogeneous compactum.", "revisions": [ { "version": "v1", "updated": "2017-07-16T11:45:41.000Z" } ], "analyses": { "keywords": [ "cardinal invariants", "short proof", "upper bounds", "countably tight homogeneous compactum", "van mill regarding" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }