{ "id": "1707.03279", "version": "v1", "published": "2017-07-11T14:05:24.000Z", "updated": "2017-07-11T14:05:24.000Z", "title": "A rank inequality for the annular Khovanov homology of 2-periodic links", "authors": [ "Melissa Zhang" ], "comment": "42 pages, 32 figures", "categories": [ "math.GT", "math.QA" ], "abstract": "For a 2-periodic link $\\tilde L$ in the thickened annulus and its quotient link $L$, we exhibit a spectral sequence with $E^1 \\cong AKh(\\tilde L) \\otimes_{\\mathbb{F}_2} \\mathbb{F}_2[\\theta, \\theta^{-1}] \\rightrightarrows E^\\infty \\cong AKh(L) \\otimes_{\\mathbb{F}_2} \\mathbb{F}_2[\\theta, \\theta^{-1}].$ This spectral sequence splits along quantum and $sl_2$ weight space gradings, proving a rank inequality $rank\\ AKh^{j,k}(L) \\leq rank\\ AKh^{2j-k,k} (\\tilde L)$ for every pair of quantum and $sl_2$ weight space gradings $(j,k)$. We also present a few decategorified consequences and discuss partial results toward a similar statement for the Khovanov homology of 2-periodic links.", "revisions": [ { "version": "v1", "updated": "2017-07-11T14:05:24.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27", "57M60" ], "keywords": [ "annular khovanov homology", "rank inequality", "weight space gradings", "spectral sequence splits", "similar statement" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }