{ "id": "1707.03181", "version": "v1", "published": "2017-07-11T09:06:21.000Z", "updated": "2017-07-11T09:06:21.000Z", "title": "On the difficulty of finding spines", "authors": [ "Cyril Lacoste" ], "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that the set of symplectic lattices in the Siegel space $\\mathfrak{h}_g$ whose systoles generate a subspace of dimension at least 3 in $\\mathbb{R}^{2g}$ does not contain any $\\mathrm{Sp}(2g,\\mathbb{Z})$-equivariant deformation retract of $\\mathfrak{h}_g$.", "revisions": [ { "version": "v1", "updated": "2017-07-11T09:06:21.000Z" } ], "analyses": { "keywords": [ "finding spines", "difficulty", "equivariant deformation retract", "symplectic lattices", "siegel space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }